InnoDB中的表级锁、页级锁、行级锁详解

MySQL支持三种层级的锁定

我们知道,MySQL支持三种层级的锁定,分别为:

  • 表级锁定

表级锁是MySQL中锁定粒度最大的一种锁,表示对当前操作的整张表加锁,它实现简单,资源消耗较少,被大部分MySQL引擎支持。最常使用的MYISAM与INNODB都支持表级锁定

  • 页级锁定

页级锁是MySQL中锁定粒度介于行级锁和表级锁中间的一种锁。表级锁速度快,但冲突多,行级冲突少,但速度慢。所以取了折衷的页级,一次锁定相邻的一组记录。BDB支持页级锁

  • 行级锁定

行级锁是Mysql中锁定粒度最细的一种锁,表示只针对当前操作的行进行加锁。行级锁能大大减少数据库操作的冲突。其加锁粒度最小,但加锁的开销也最大

从上到下,锁的粒度逐渐细粒化, 但实现开销逐渐增大。 同时我们也要须知,表锁,页锁,行锁并不是一个具体的锁,仅代表将数据库某个层级上的数据进行锁定。具体怎么去锁这个数据,还要看具体的锁实现是什么

MyISAM引擎的表锁 

MyISAM只支持表锁,不支持行锁和页面锁。

  • 据我查到的资料中,MyISAM引擎支持的锁不多,也就是表级的排他锁和共享锁而已,官方资料上也没有专门介绍MyISAM锁的章节

  • 表锁并不是一个真正的锁,只是代表对数据库表层级的数据进行锁定。具体以什么形式锁定,则要看具体的具体锁实现。

MyISAM下的共享锁和排他锁

我们知道MyISAM存储引擎只支持在表层级对数据进行锁定,既只支持表锁。那么表层级具体的加锁实现有什么?既表级共享锁和表级排他锁

  • 表共享读锁(表级共享锁)

获得表共享读锁的事务可以读取该表的任意数据。MyISAM引擎在执行select语句前,会自动给涉及的表加表共享读锁

  • 表独占写锁(表级排他锁)

获得表独占写锁的事务可以更新或删除该表中任意数据。在执行update,delete,insert等语句前,会自动给涉及的表加表独占写锁

只是很多场合更喜欢把表级共享锁表级排他锁叫做表共享读锁表独占写锁,实际上它们的意思是一样的

既MyISAM的表锁可以做到,读读共享,读写互斥,写写互斥的功能

  • 读读共享:事务A获得表读锁,事务B依然可以获得表读锁

  • 读写互斥:事务A获得表读锁,事务B申请该表写锁则会阻塞,因为事务A获得了该表读锁,有互斥性

  • 写写互斥:事务A获得表写锁,事务B申请该表写锁则会阻塞,因为事务A获得了该表写锁,也有互斥性

值得注意的是

The LOCAL modifier enables nonconflicting INSERT statements (concurrent inserts) by other sessions to execute while the lock is held. (See Section 8.11.3, “Concurrent Inserts”.) However, READ LOCAL cannot be used if you are going to manipulate the database using processes external to the server while you hold the lock. For InnoDB tables, READ LOCAL is the same as READ

MyISAM在一定程度上还是可以支持并发的进行查询和插入操作的。既如果MyISAM表中没有空洞(即表的中间没有被删除的行),MyISAM允许在一个线程读表的同时,另一个线程从表尾插入记录。这属于MyISAM的特性,所以InnoDB存储引擎是不支持的! 

MyISAM引擎的行级锁 

InnoDB 引擎是支持行级锁的,而 MyISAM 引擎并不支持行级锁。

前面也提到,普通的 select 语句是不会对记录加锁的,因为它属于快照读。如果要在查询时对记录加行锁,可以使用下面这两个方式,这种查询会加锁的语句称为锁定读

//对读取的记录加共享锁
select ... lock in share mode;

//对读取的记录加独占锁
select ... for update;

上面这两条语句必须在一个事务中,因为当事务提交了,锁就会被释放,所以在使用这两条语句的时候,要加上 begin、start transaction 或者 set autocommit = 0。

共享锁(S锁)满足读读共享,读写互斥。独占锁(X锁)满足写写互斥、读写互斥。

行级锁的类型主要有三类:

  • Record Lock,记录锁,也就是仅仅把一条记录锁上;

  • Gap Lock,间隙锁,锁定一个范围,但是不包含记录本身;

  • Next-Key Lock:Record Lock + Gap Lock 的组合,锁定一个范围,并且锁定记录本身。

Record Lock

Record Lock 称为记录锁,锁住的是一条记录。而且记录锁是有 S 锁和 X 锁之分的:

  • 当一个事务对一条记录加了 S 型记录锁后,其他事务也可以继续对该记录加 S 型记录锁(S 型与 S 锁兼容),但是不可以对该记录加 X 型记录锁(S 型与 X 锁不兼容);

  • 当一个事务对一条记录加了 X 型记录锁后,其他事务既不可以对该记录加 S 型记录锁(S 型与 X 锁不兼容),也不可以对该记录加 X 型记录锁(X 型与 X 锁不兼容)。

举个例子,当一个事务执行了下面这条语句:

mysql > begin;
mysql > select * from t_test where id = 1 for update;

就是对  t_test 表中主键 id 为 1 的这条记录加上 X 型的记录锁,这样其他事务就无法对这条记录进行修改了。

当事务执行 commit 后,事务过程中生成的锁都会被释放。

Gap Lock 

Gap Lock 称为间隙锁,只存在于可重复读隔离级别,目的是为了解决可重复读隔离级别下幻读的现象。

假设,表中有一个范围 id 为(3,5)间隙锁,那么其他事务就无法插入 id = 4 这条记录了,这样就有效的防止幻读现象的发生。

间隙锁虽然存在  X 型间隙锁和 S 型间隙锁,但是并没有什么区别,间隙锁之间是兼容的,即两个事务可以同时持有包含共同间隙范围的间隙锁,并不存在互斥关系,因为间隙锁的目的是防止插入幻影记录而提出的

Next-Key Lock 

Next-Key Lock 称为临键锁,是 Record Lock + Gap Lock 的组合,锁定一个范围,并且锁定记录本身。

假设,表中有一个范围 id 为(3,5] 的 next-key lock,那么其他事务即不能插入 id = 4 记录,也不能修改 id = 5 这条记录。

所以,next-key lock 即能保护该记录,又能阻止其他事务将新纪录插入到被保护记录前面的间隙中。

next-key lock 是包含间隙锁+记录锁的,如果一个事务获取了 X 型的 next-key lock,那么另外一个事务在获取相同范围的 X 型的 next-key lock 时,是会被阻塞的

比如,一个事务持有了范围为 (1, 10] 的 X 型的 next-key lock,那么另外一个事务在获取相同范围的 X 型的 next-key lock 时,就会被阻塞。

虽然相同范围的间隙锁是多个事务相互兼容的,但对于记录锁,我们是要考虑 X 型与 S 型关系,X 型的记录锁与 X 型的记录锁是冲突的。

总结

虽然MySQL支持表,页,行三级锁定,但MyISAM存储引擎只支持表级的数据锁定,既表锁。所以MyISAM的加锁相对比较开销低,但数据操作的并发性能相对就不高。但如果写操作都是尾插入,那么还是可以支持一定程度的读写并发

既MyISAM的数据操作如果导致加锁行为,那么该锁肯定是一个表锁,会对全表数据进行加锁。但也要看具体什么形式的表锁,不同形式的表锁有着不同的特性

同时从MyISAM所支持的锁中也可以看出,MyISAM是一个支持读读并发,但不支持通用读写并发,写写并发的数据库引擎,所以它更适合用于读多写少的应用场合

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/778902.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【C++/STL】优先级队列的介绍与模拟实现仿函数

✨ 万物与我皆是自由诗 🌏 📃个人主页:island1314 🔥个人专栏:C学习 🚀 欢迎关注:👍点赞 👂&#x1…

深入理解TCP协议格式(WireShark分析)

传输控制协议(TCP)是互联网中最为关键的通信协议之一。了解TCP协议的细节不仅对于网络工程师至关重要,对于任何涉及网络通信的软件开发人员而言都是必备的知识。本文旨在深入探讨TCP协议,从协议的基本概述到其工作机制&#xff0c…

多维度多场景文档门户,鸿翼ECM文档云打造文档管理新范式

​在现代企业运营中,内容协作的效率直接影响到组织的整体表现和竞争力。传统的文档管理系统都是通过目录结构的方式进行文件管理,在实际业务中无法满足用户多视角、多维度、多场景的文档业务需求。因此,搭建结合文档体系的业务门户是许多企业…

AI绘画【光影模型】,穿越赛博迷雾,重塑光影艺术本真魅力

有时候是不是觉得单纯依靠大模型产生的图片作品光线方面平平无奇,依靠提示词,各种权重的调整费了九牛二虎之力才抽到一张感觉还算满意的作品。这个时候我们可以考虑结合相关Lora来进行。今天带来了一款光影氛围灯效果Lora——None-光染摄影,该…

进程的概念

一.进程和程序的理解 首先抛出结论:进程是动态的,暂时存在于内存中,进程是程序的一次执行,而进程总是对应至少一个特定的程序。 程序是静态的,永久的存在于磁盘中。 程序是什么呢?程序其实就是存放在我们…

Windows如何查看端口是否占用,并结束端口进程

需求与问题:前后端配置了跨域操作,但是仍然报错,可以考虑端口被两个程序占用,找不到正确端口或者后端接口书写是否规范,特别是利用Python Flask书写时要保证缩进是否正确! Windows操作系统中,查…

Matlab中collectPlaneWave函数的应用

查看文档如下: 可以看出最多5个参数,分别是阵列对象,信号幅度,入射角度,信号频率,光速。 在下面的代码中,我们先创建一个3阵元的阵列,位置为:(-1,0,0&#x…

代码随想录算法训练Day57|LeetCode200-岛屿数量、LeetCode695-岛屿的最大面积

岛屿数量 题目描述 力扣200-岛屿数量 给你一个由 1(陆地)和 0(水)组成的的二维网格,请你计算网格中岛屿的数量。 岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。 此…

设计模式之单例模式(Java)

单例模式实现方式:懒汉式、饿汉式、双重检查、枚举、静态内部类; 懒汉式: /*** 懒汉式单例模式* author: 小手WA凉* create: 2024-07-06*/ public class LazySingleton implements Serializable {private static LazySingleton lazySinglet…

操作系统中的权限说明

什么是权限 权限在操作系统中是一个重要的功能,它允许你控制谁可以读取、写入或执行某个文件。不同的操作系统和文件系统可能有不同的权限模型,但在类Unix系统(如Linux和macOS)中,文件权限通常由三部分组成&#xff1a…

提升系统稳定性:熔断、降级和限流策略详解

文章目录 前言一、熔断(Circuit Breaker)二、降级(Degradation)三、限流(Rate Limiting)四、应用案例五、小结推荐阅读 前言 随着互联网业务的快速发展,系统稳定性和高可用性成为现代分布式系统…

Spring源码十三:非懒加载单例Bean

上一篇Spring源码十二:事件发布源码跟踪中,我们介绍了Spring中是如何使用观察者设计模式的思想来实现事件驱动开发的:实际上就是将所有监听器注册到广播器中,并通过监听该事件的监听器来处理时间的。结合前面十二篇文章我们将Spri…

电表读数检测数据集VOC+YOLO格式18156张12类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):18156 标注数量(xml文件个数):18156 标注数量(txt文件个数):18156 标…

cs224n作业4

NMT结构图:(具体结构图) LSTM基础知识 nmt_model.py: 参考文章:LSTM输出结构描述 #!/usr/bin/env python3 # -*- coding: utf-8 -*-""" CS224N 2020-21: Homework 4 nmt_model.py: NMT Model Penchen…

【0基础学爬虫】爬虫基础之scrapy的使用

【0基础学爬虫】爬虫基础之scrapy的使用 大数据时代,各行各业对数据采集的需求日益增多,网络爬虫的运用也更为广泛,越来越多的人开始学习网络爬虫这项技术,K哥爬虫此前已经推出不少爬虫进阶、逆向相关文章,为实现从易到…

九浅一深Jemalloc5.3.0 -- ④浅*配置

目前市面上有不少分析Jemalloc老版本的博文,但最新版本5.3.0却少之又少。而且5.3.0的架构与5之前的版本有较大不同,本着“与时俱进”、“由浅入深”的宗旨,我将逐步分析最新release版本Jemalloc5.3.0的实现。 另外,单讲实现代码是…

多功能工具网站

江下科技在线应用-免费PDF转换成Word-word转pdf-无需下载安装 (onlinedo.cn)https://www.onlinedo.cn/

荞面打造的甜蜜魔法:甜甜圈

食家巷荞面甜甜圈是一款具有特色的美食。它以荞面为主要原料,相较于普通面粉,荞面具有更高的营养价值,富含膳食纤维、维生素和矿物质。荞面甜甜圈的口感可能会更加扎实和有嚼劲,同时带着荞面特有的谷物香气。在制作过程中&#xf…

vue侦听器watch()

侦听器watch&#xff08;&#xff09; 侦听器侦听数据变化&#xff0c;我们可以使用watch 选项在每次响应式属性变化时触发一个函数。 <template><h3>侦听器watch</h3><hr> <p>{{nessage}}</p> <button click"exchage">…

缓存-缓存的使用与基本详解

1.缓存使用 为了系统性能的提升&#xff0c;我们一般都会将部分数据放入缓存中&#xff0c;加速访问。而db承担数据落盘工作。 哪些数据适合放入缓存&#xff1f; 即时性、数据一致性要求不高的访问量大且更新频率不高的数据&#xff08;读多&#xff0c;写少&#xff09; …